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Agenda

Day 1: Figures 

✅

Day 2: Selecting, filtering, and mutating 

✅

Day 3: Grouping and tables 

✅

Day 4: Functions 

✅

Day 5: Analyze your data 

"

Put everything you've learned into action, and more!Put everything you've learned into action, and more!
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my-project/
 !" my-project.Rproj
 !" README
 !" data/
 #   !"" raw/
 #   $"" processed/
 !" code/
 !" results/
 #   !"" tables/
 #   !"" figures/
 #   $"" output/
 $" docs/

An .Rproj file is mostly just a placeholder. It
remembers various options, and makes it easy
to open a new RStudio session that starts up in
the correct working directory. You never need
to edit it directly.
A README file can just be a text file that
includes notes for yourself or future users.
I like to have a folder for raw data -- which I
never touch -- and a folder(s) for datasets that
I create along the way.

Organization
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source(here::here("code", "functions.R"))

dat <- read_csv(here::here(
             "data", "raw", "data.csv"))

p <- ggplot(dat) + geom_point(aes(x, y))

ggsave(plot = p, 
       filename = here::here(
       "results", "figures", "fig.pdf"))

The here package lets you refer to files
without worrying too much about relative
paths.
Construct file paths with reference to the top
directory holding your .Rproj file.
here::here("data", "raw", "data.csv")
for me, here, becomes
"/Users/louisahsmith/Google
Drive/Teaching/R
course/materials/data/raw/data.csv"

But if I send you this file, it will become
whatever file path you need it to be.

Referring to files with the here package

5 / 36



Referring to the here package

here::here()

is equivalent to

library(here)
here()

I just prefer to write out the package name whenever I need it, but you can load the package for your entire
session if you want.

Note that you can refer to any function without loading the whole package this way, e.g.Note that you can refer to any function without loading the whole package this way, e.g.
tableone::CreateTableOne() instead of  instead of library(tableone); CreateTableOne()
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The source() function
Will run code from another file.

source("script.R")
source(here::here("code", "functions.R"))

All the objects will be created, packages loaded, etc. as if you had run the code directly.
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The source() function
Can even run code directly from a URL.

source("https://raw.githubusercontent.com/
       louisahsmith/intro-to-R/master/day1/
       day1-script1.R")
## Error in eval(ei, envir): object 'new_vals' not found

Reading code from another file can make it a bit harder to debug.
But it's nice when you have functions, etc. that you use a lot and want to include them at the start of
every script.
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Reading in data
You could also begin your scripts by reading in your data via a data-cleaning file with source().
Each of these have different arguments that will allow you to read in specific columns only, skip rows, give
the variables names, etc. There are also better options out there if your dataset is really big (look into the
data.table or the vroom package), and if you have other types of data.

# the readr functions are loaded with library(tidyverse)
dat <- readr::read_csv("data.csv")
dat <- readr::read_table("data.dat")
# saved as an R object with write_rds()
dat <- readr::read_rds("data.rds")
dat <- readxl::read_excel("data.xlsx")
dat <- haven::read_sas("data.sas7bdat")
dat <- haven::read_stata("data.dta")
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Saving your data
Once you've cleaned your data and created your dataset, you probably want to save another copy so you
don't need to perform all your data cleaning functions every time you read it in.

You can basically do the opposite of most of the read functions: write.
The one I usually use, if I'm creating data for myself, is write_rds(). It creates an R object you can
read in with read_rds(), so you can guarantee nothing will change in between writing and reading.
If I'm sharing data, I usually use write_csv().

Note: these are the tidyverse versions of the functions, which have better defaults, are more consistent, and
are just more likely to do what you want. The "base R" versions are: read.csv(), write.csv(),
readRDS() and saveRDS().
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Walk through the code so far and ask questions as needed
Exercises saved for a final challenge!
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Missing values
R uses NA for missing values
Unlike some other statistical software, it will return NA to any logical statement

This makes it somewhat harder to deal with but also harder to make mistakes

NA > 3

## [1] NA

mean(c(1, 2, NA))

## [1] NA

mean(c(1, 2, NA), na.rm = TRUE)

## [1] 1.5
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Special NA functions
Certain functions deal with missing values explicitly

vals <- c(1, 2, NA)
is.na(vals)

## [1] FALSE FALSE  TRUE

anyNA(vals)

## [1] TRUE

na.omit(vals)

## [1] 1 2
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nlsy[1, c("id", "glasses", "age_bir")]

## # A tibble: 1 x 3
##      id glasses age_bir
##   <dbl>   <dbl>   <dbl>
## 1     1      -4      -5

nlsy_na <- nlsy %>% na_if(-1) %>% na_if(-2) %>% 
  na_if(-3) %>% na_if(-4) %>% na_if(-5)
nlsy_na[1, c("id", "glasses", "age_bir")]

## # A tibble: 1 x 3
##      id glasses age_bir
##   <dbl>   <dbl>   <dbl>
## 1     1      NA      NA

This is obviously a bit annoying if you have a lot of
values that indicate missingness. In that case, you
may want to look into the naniar package.

Creating NAs with na_if()
You might read in data that has been created in another program or has special values to indicate
missingness.
For example, in the NLSY data, -1 = Refused, -2 = Don't know, -3 = Invalid missing, -4 = Valid missing, -5 =
Non-interview
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More na_if()
The na_if() strategy is generally the most useful if you're determining NA's over the course of your
analysis, or if you have different NA values for different variables.

nlsy_bad <- nlsy %>% 
  mutate(id = na_if(id, 1))
nlsy_bad[1:2, c("id", "glasses", "age_bir")]

## # A tibble: 2 x 3
##      id glasses age_bir
##   <dbl>   <dbl>   <dbl>
## 1    NA      -4      -5
## 2     2       0      34
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Read in NA's directly
Or, if you know a priori which values indicate missingness (e.g., "."), you can specify that when reading in
the data.

nlsy <- read_csv(here::here("day5", "nlsy.csv"), 
          col_names = colnames_nlsy, skip = 1,
          na = c("-1", "-2", "-3", "-4", "-5"))

(You have to write the values as strings, even if they're numbers)(You have to write the values as strings, even if they're numbers)
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Complete cases
Sometimes you may just want to get rid of all the rows with missing values.

Don't do this without good reason!Don't do this without good reason!

nrow(nlsy)

## [1] 12686

nlsy_cc <- nlsy %>% filter(complete.cases(nlsy))
nrow(nlsy_cc)

## [1] 1436

nlsy2 <- nlsy %>% select(id, glasses, eyesight) %>% na.omit()
nrow(nlsy2)

## [1] 8444
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Walk through the code so far and ask questions as needed
Exercises saved for a final challenge!
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Sharing your results

First: some quick analysis

# load packages
library(tidyverse)
# must install if haven't already
library(broom) # for making pretty model output
library(splines) # for adding splines

# read in data
nlsy_clean <- read_rds(here::here("data", "nlsy_clean.rds"))
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Quick analysis, cont.
Model formulas will automatically make indicator variables for factors, with the first level the reference. An
intercept will be included unless suppressed with y ~ -1 + x.

# linear regression (OLS)
mod_lin1 <- lm(log_inc ~ age_bir + sex + race_eth, 
                 data = nlsy_clean)
# another way to do linear regression (GLM)
mod_lin2 <- glm(log_inc ~ age_bir + sex + race_eth, 
                family = gaussian(link = "identity"),
                data = nlsy_clean)
# logistic regression
mod_log <- glm(glasses ~ eyesight + sex + race_eth,
               family = binomial(link = "logit"),
               data = nlsy_clean)
# poisson regression
mod_pois <- glm(nsibs ~ sleep_wkdy + sleep_wknd,
                  family = poisson(link = "log"),
                  data = nlsy_clean)

You can use the survival package for time-to-event models.

20 / 36



Quick analysis, cont.
Create interactions with * (will automatically include main terms too).
Create polynomial terms with I(x^2).
Create splines with the splines package and the ns() function.

mod_big <- glm(log_inc ~ sex * age_bir +
                 nsibs + I(nsibs^2) +
                 ns(sleep_wkdy, knots = 3),
          family = gaussian(link = "identity"),
          data = nlsy_clean)
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Look at results
summary(mod_log)

## 
## Call:
## glm(formula = glasses ~ eyesight + sex + race_eth, family = binomial(link = "logit"), 
##     data = nlsy_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4275  -1.0825  -0.8343   1.2221   1.6261  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     -0.51260    0.06317  -8.114 4.89e-16 ***
## eyesightVery Good               -0.07920    0.05359  -1.478   0.1394    
## eyesightGood                    -0.07146    0.06188  -1.155   0.2481    
## eyesightFair                    -0.21488    0.09105  -2.360   0.0183 *  
## eyesightPoor                     0.10558    0.18152   0.582   0.5608    
## sexFemale                        0.69281    0.04493  15.420  < 2e-16 ***
## race_ethNon-Hispanic Black      -0.28460    0.06493  -4.383 1.17e-05 ***
## race_ethNon-Black, Non-Hispanic  0.28528    0.05945   4.799 1.60e-06 ***
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Look at results
Or use the tidy() function from the broom package, which nicely summarizes all types of models.

# from the broom package
tidy(mod_log)

## # A tibble: 8 x 5
##   term                            estimate std.error statistic  p.value
##   <chr>                              <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)                      -0.513     0.0632    -8.11  4.89e-16
## 2 eyesightVery Good                -0.0792    0.0536    -1.48  1.39e- 1
## 3 eyesightGood                     -0.0715    0.0619    -1.15  2.48e- 1
## 4 eyesightFair                     -0.215     0.0911    -2.36  1.83e- 2
## 5 eyesightPoor                      0.106     0.182      0.582 5.61e- 1
## 6 sexFemale                         0.693     0.0449    15.4   1.21e-53
## 7 race_ethNon-Hispanic Black       -0.285     0.0649    -4.38  1.17e- 5
## 8 race_ethNon-Black, Non-Hispanic   0.285     0.0594     4.80  1.60e- 6
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Pull o! a coe"cient
coef(mod_log)

##                     (Intercept)               eyesightVery Good 
##                     -0.51260479                     -0.07920222 
##                    eyesightGood                    eyesightFair 
##                     -0.07145996                     -0.21487546 
##                    eyesightPoor                       sexFemale 
##                      0.10557518                      0.69280825 
##      race_ethNon-Hispanic Black race_ethNon-Black, Non-Hispanic 
##                     -0.28460369                      0.28527712

coef(mod_log)[6]

## sexFemale 
## 0.6928082

tidy(mod_log) %>% slice(6) %>% pull(estimate)

## [1] 0.6928082
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Creating new values
But you can create new values in this dataframe!

res_mod_log <- mod_log %>% tidy() %>% 
  mutate(lci = estimate - 1.96 * std.error,
         uci = estimate + 1.96 * std.error)
res_mod_log

## # A tibble: 8 x 7
##   term                            estimate std.error statistic  p.value    lci     uci
##   <chr>                              <dbl>     <dbl>     <dbl>    <dbl>  <dbl>   <dbl>
## 1 (Intercept)                      -0.513     0.0632    -8.11  4.89e-16 -0.636 -0.389 
## 2 eyesightVery Good                -0.0792    0.0536    -1.48  1.39e- 1 -0.184  0.0258
## 3 eyesightGood                     -0.0715    0.0619    -1.15  2.48e- 1 -0.193  0.0498
## 4 eyesightFair                     -0.215     0.0911    -2.36  1.83e- 2 -0.393 -0.0364
## 5 eyesightPoor                      0.106     0.182      0.582 5.61e- 1 -0.250  0.461 
## 6 sexFemale                         0.693     0.0449    15.4   1.21e-53  0.605  0.781 
## 7 race_ethNon-Hispanic Black       -0.285     0.0649    -4.38  1.17e- 5 -0.412 -0.157 
## 8 race_ethNon-Black, Non-Hispanic   0.285     0.0594     4.80  1.60e- 6  0.169  0.402

We could also clean up the term variable, perhaps with fct_recode().
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Calculating ORs
Since these are results from a logistic regression, we'll probably want to exponentiate the coefficients and
their CIs.

res_mod_log <- res_mod_log %>% select(term, estimate, lci, uci) %>%
  filter(term != "(Intercept)") %>%
  mutate_at(vars(estimate, lci, uci), exp)
res_mod_log

## # A tibble: 7 x 4
##   term                            estimate   lci   uci
##   <chr>                              <dbl> <dbl> <dbl>
## 1 eyesightVery Good                  0.924 0.832 1.03 
## 2 eyesightGood                       0.931 0.825 1.05 
## 3 eyesightFair                       0.807 0.675 0.964
## 4 eyesightPoor                       1.11  0.779 1.59 
## 5 sexFemale                          2.00  1.83  2.18 
## 6 race_ethNon-Hispanic Black         0.752 0.662 0.854
## 7 race_ethNon-Black, Non-Hispanic    1.33  1.18  1.49
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Confidence intervals with str_glue()
Now we want to combine the lower and upper CI limits.

res_mod_log %>% select(term, estimate, lci, uci) %>%
  filter(term != "(Intercept)") %>%
  mutate(ci = str_glue("({lci}, {uci})"))

## # A tibble: 7 x 5
##   term                            estimate   lci   uci ci                                    
##   <chr>                              <dbl> <dbl> <dbl> <glue>                                
## 1 eyesightVery Good                  0.924 0.832 1.03  (0.831734362089001, 1.02617441582346) 
## 2 eyesightGood                       0.931 0.825 1.05  (0.824698936937584, 1.05107868439189) 
## 3 eyesightFair                       0.807 0.675 0.964 (0.674797666860532, 0.96424628337116) 
## 4 eyesightPoor                       1.11  0.779 1.59  (0.778639992096712, 1.58622477434497) 
## 5 sexFemale                          2.00  1.83  2.18  (1.8307856398006, 2.18337382956281)   
## 6 race_ethNon-Hispanic Black         0.752 0.662 0.854 (0.662416384318316, 0.854408001346314)
## 7 race_ethNon-Black, Non-Hispanic    1.33  1.18  1.49  (1.18383962963298, 1.49449918933821)

We can paste text and R code together with str_glue(). Everything goes in quotation marks. R code to be
evaluated goes in {}.

Which means we can use the round() function within the curly braces too!
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More str_glue()
You can paste any R expression you want evaluated in the curly braces.
You can break up chunks of your string to make it easier to read in your code.

str_glue(
  "The intercept from the regression is ",
  "{round(coef(lm(income~sex, data = nlsy_clean))[1])} and a random ",
  "number that I generated is {round(rnorm(1, 0, 1), 3)}."
)

## The intercept from the regression is 14880 and a random number that I generated is -1.116.

More functions are available in the glue package. For example, you could make the right-hand side of a
model like this:

glue::glue_collapse(
  c("age_bir", "sex", "nsibs", "race_eth"),
  sep = " + "
)

## age_bir + sex + nsibs + race_eth
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Better: Create a function
We want to take these values and print "OR (95% CI LCI, UCI)" for each one. Let's make a function to put
together everything we've done so far!

ci_func <- function(estimate, lci, uci) {
  OR <- round(exp(estimate), 2)
  lci <- round(exp(lci), 2)
  uci <- round(exp(uci), 2)
  to_print <- str_glue("{OR} (95% CI {lci}, {uci})")
  return(to_print)
}

Let's test on some made-up values:

ci_func(.2523421, -.142433, .851234)

## 1.29 (95% CI 0.87, 2.34)

29 / 36



From start to finish
new_mod <- glm(glasses ~ eyesight*sex, family = binomial(link = "logit"),
               data = nlsy_clean)
new_mod %>% tidy() %>%
  filter(term != "(Intercept)") %>%
  mutate(lci = estimate - 1.96 * std.error,
         uci = estimate + 1.96 * std.error,
         OR = ci_func(estimate, lci, uci),
         p.value = scales::pvalue(p.value)) %>%
  select(term, OR, p.value)

## # A tibble: 9 x 3
##   term                        OR                       p.value
##   <chr>                       <glue>                   <chr>  
## 1 eyesightVery Good           1.07 (95% CI 0.92, 1.23) 0.392  
## 2 eyesightGood                0.97 (95% CI 0.81, 1.15) 0.702  
## 3 eyesightFair                0.73 (95% CI 0.55, 0.97) 0.029  
## 4 eyesightPoor                1.23 (95% CI 0.68, 2.2)  0.497  
## 5 sexFemale                   2.37 (95% CI 2.04, 2.75) <0.001 
## 6 eyesightVery Good:sexFemale 0.71 (95% CI 0.57, 0.87) 0.001  
## 7 eyesightGood:sexFemale      0.83 (95% CI 0.65, 1.05) 0.121  
## 8 eyesightFair:sexFemale      0.97 (95% CI 0.67, 1.39) 0.867  
## 9 eyesightPoor:sexFemale      0.71 (95% CI 0.34, 1.47) 0.353 30 / 36



Final challenge

Data analysis from start to finish

1. Prepare and organize your project
2. Load and clean the data
3. Do some exploratory analysis (table 1, figure)
4. Do some regression analysis (results table, figure)
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Prepare your project
File -> New Project -> New Directory -> New Project
Name it something like NLSY and put it in an appropriate folder on your computer
Within that folder, make new folders as follows:

NLSY/
 !" NLSY.Rproj
 !" data/
 #   !"" raw/
 #   $"" processed/
 !" code/
 $"" results/
     !"" tables/
     $"" figures/
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Prepare the data
Copy and paste nlsy.csv into data/raw.
Create a new file and save it as clean_data.R.
In that file, read in the NLSY data and load any packages you need. Make sure you replace any missing
values with NA. Hint: there are extra missnig values in the age_bir variable. Also, the variable names
might be useful:

colnames_nlsy <- c(
  "glasses", "eyesight", "sleep_wkdy", "sleep_wknd",
  "id", "nsibs", "samp", "race_eth", "sex", "region",
  "income", "res_1980", "res_2002", "age_bir"
)

Add factor labels to eyesight, sex, race_eth, region, as in earlier slides. Select those variables plus
income, id, nsibs, age_bir, and the sleep variables. Then restrict to complete cases and people with
incomes < $30,000. Make a variable for the log of income (replace with NA if income <= 0).
Also in that file, save your new dataset as a .rds file to the data/processed folder.
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Do some exploratory analysis
Create a file called create_figure.R. In this file, read in the cleaned dataset. Load any packages you
need. Then make a ggplot figure of your choosing to show something about the distribution of the
data. Save it to the results/figures folder as a .png file using the ggsave() function.
Create a file called table_1.R. In this file, read in the cleaned dataset and use the tableone package to
create a table 1 with the variables of your choosing. Modify the following code to save it as a .csv file.
Open it in Excel/Numbers/Google Sheets/etc. to make sure it worked.

tab1 <- CreateTableOne(...) %>% print() %>% as_tibble(rownames = "id")
write_csv(tab1, ...)
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Do some regression analysis
In another file called lin_reg.R, read in the data and run the following linear regression: lm(log_inc
~ age_bir + sex + race_eth + nsibs, data = nlsy). Modify the CI function to produce a table
of results for a linear regression. Add an argument digits =, with a default of 2, to allow you to choose
the number of digits you'd like. Save it in a separate file called functions.R. Use source() to read in
the function at the beginning of your script.
Save a table of your results as a .csv file. Make the names of the coefficients nice!
Using the results, use ggplot to make a figure. Use geom_point() for the point estimates and
geom_errorbar() for the confidence intervals. It will look something like this:

ggplot(data) + 
  geom_point(aes(x = , y = )) + 
  geom_errorbar(aes(x = , ymin = , ymax = ))

Save that figure as a .pdf using ggsave(). You may want to play around with the height = and width
= arguments to make it look like you want.
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Appendix: some other packages I like but haven't
mentioned

rmarkdown: I write most of my documents (manuscripts, slides, homeworks) in RMarkdown. I couldn't
live without it. (https://rmarkdown.rstudio.com)
lubridate: Work with dates and times really easily. (https://lubridate.tidyverse.org)
janitor: Helps clean variable names, etc. (http://sfirke.github.io/janitor/)
furrr: Speed up your code with parallel processing. (https://davisvaughan.github.io/furrr/)
shiny: Make interactive apps. I made http://selection-bias.louisahsmith.com in shiny.
(http://shiny.rstudio.com)
drake: Pipeline for analysis. (https://docs.ropensci.org/drake)
rvest: Scrape data from websites. (https://rvest.tidyverse.org)
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