
Introduction to R

Day 4: Functions

October 10, 2019

Agenda

Day 1: Figures

Day 2: Selecting, filtering, and mutating

Day 3: Grouping and tables

Day 4: Functions

Day 5: Analyze your data

2 / 57

A tibble: 1,128 x 5
id sex race_eth glasses eyesight
<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 2 3 0 1
2 6 1 3 1 2
3 8 2 3 0 2
4 16 2 3 1 3
5 18 1 3 0 3
6 20 2 3 1 2
7 27 2 3 0 1
… with 1,121 more rows

Agenda

Day 1: Figures

✅

Day 2: Selecting, filtering, and mutating

✅

Day 3: Grouping and tables

✅

analysis_dat <- nlsy %>%
 mutate(ineligible = case_when(
 income > 50000 ~ 1,
 age_bir > 35 ~ 1,
 TRUE ~ 0
)) %>%
 filter(ineligible == 0) %>%
 select(id, sex, race_eth,
 glasses, eyesight)
analysis_dat

3 / 57

A tibble: 6 x 4
Groups: race_eth [3]
race_eth sex prop_glass sd_eyesight
<fct> <fct> <dbl> <dbl>
1 Hispanic male 0.403 0.894
2 Hispanic female 0.566 1.10
3 Black male 0.318 0.971
4 Black female 0.488 1.11
5 Other male 0.490 0.941
6 Other female 0.602 0.972

Agenda

Day 1: Figures

✅

Day 2: Selecting, filtering, and mutating

✅

Day 3: Grouping and tables

✅

stats <- analysis_dat %>%
 mutate(sex = factor(sex, labels =
 c("male", "female")),
 race_eth = factor(race_eth,
 labels = c("Hispanic",
 "Black", "Other"))) %>%
 group_by(race_eth, sex) %>%
 summarise(prop_glass = mean(glasses),
 sd_eyesight = sd(eyesight))
stats

4 / 57

Agenda

Day 1: Figures

✅

Day 2: Selecting, filtering, and mutating

✅

Day 3: Grouping and tables

✅

ggplot(stats) +
 geom_col(aes(x = sex, y = prop_glass,
 fill = sex)) +
 facet_grid(cols = vars(race_eth)) +
 scale_fill_brewer(palette = "Set1",
 guide = "none") +
 theme_minimal() +
 labs(x = NULL,
 y = "proportion wearing glasses")

5 / 57

Stratified by sex
1 2
n 453 675
race_eth (%)
1 77 (17) 129 (19)
2 129 (28) 164 (24)
3 247 (55) 382 (57)
glasses = 1 (%) 193 (43) 383 (57)
eyesight (mean (SD)) 2 (1) 2 (1)

Agenda

Day 1: Figures

✅

Day 2: Selecting, filtering, and mutating

✅

Day 3: Grouping and tables

✅

tab1 <- CreateTableOne(
 data = analysis_dat, strata = "sex",
 vars = c("race_eth", "glasses",
 "eyesight"),
 factorVars = c("race_eth", "glasses")
)
print(tab1, test = FALSE,
 catDigits = 0, contDigits = 0)

6 / 57

Agenda

Day 1: Figures

✅

Day 2: Selecting, filtering, and mutating

✅

Day 3: Grouping and tables

✅

Day 4: Functions

7 / 57

Functions in R
I've been denoting functions with parentheses: func()
We've seen functions such as:

mean()
theme_minimal()
mutate()
case_when()
group_by()
CreateTableOne()

Functions take argumentsarguments and return valuesvalues

8 / 57

Looking inside a function
If you want to see the code within a function, you can just type its name without the parentheses:

CreateTableOne

function (vars, strata, data, factorVars, includeNA = FALSE,
test = TRUE, testApprox = chisq.test, argsApprox = list(correct = TRUE),
testExact = fisher.test, argsExact = list(workspace = 2 *
10^5), testNormal = oneway.test, argsNormal = list(var.equal = TRUE),
testNonNormal = kruskal.test, argsNonNormal = list(NULL),
smd = TRUE)
{
ModuleStopIfNotDataFrame(data)
if (missing(vars)) {
vars <- names(data)
}
vars <- ModuleReturnVarsExist(vars, data)
ModuleStopIfNoVarsLeft(vars)
varLabels <- labelled::var_label(data[vars])
if (!missing(factorVars)) {
factorVars <- ModuleReturnVarsExist(factorVars, data)
data[factorVars] <- lapply(data[factorVars], factor)
}
test <- ModuleReturnFalseIfNoStrata(strata, test) 9 / 57

func <- function()
You can name your function like you do anyYou can name your function like you do any

other objectother object

Just avoid names of existing functions

Structure of a function

10 / 57

func <- function(arg1,
 arg2 = default_val)
}

What objects/values do you need to make yourWhat objects/values do you need to make your
function work?function work?

You can give them default values to use if the user
doesn't specify others

Structure of a function

11 / 57

func <- function(arg1,
 arg2 = default_val) {

}

Everything else goes within curly bracesEverything else goes within curly braces

Code in here will essentially look like any other R
code, using any inputs to your functions

Structure of a function

12 / 57

func <- function(arg1,
 arg2 = default_val) {
 new_val <- # do something with the args
}

Make new objectsMake new objects

One thing you'll likely want to do is make new
objects along the way
These aren't saved to your environment (i.e., you
won't see them in the upper-right window) when
you run the function
You can think of them as being stored in a
temporary environment within the function

Structure of a function

13 / 57

func <- function(arg1,
 arg2 = default_val) {
 new_val <- # do something with the args
 return(new_val)
}

Return something new that the code hasReturn something new that the code has
producedproduced

The return() statement is actually optional. If
you don't put it, it will return the last object in the
code. When you're starting out, it's safer to
always explicitly write out what you want to
return.

Structure of a function

14 / 57

Example: a new function for the mean
Let's say we are not satisfied with the mean() function and want to write our own.
Here's the general structure we'll start with.

new_mean <- function() {

}

15 / 57

New mean: arguments
We'll want to take the mean of a vector of numbers.
It will help to make an example of such a vector to think about what the input might look like, and to test
the function. We'll call it x:

x <- c(1, 3, 5, 7, 9)

We can add x as an argument to our function:

new_mean <- function(x) {

}

16 / 57

New mean: function body
Let's think about how we calculate a mean in math, and then translate it into code:

So we need to sum the elements of x together, and then divide by the number of elements.
We can use the functions sum() and length() to help us.
We'll write the code with our test vector first, before inserting it into the function:

n <- length(x)
sum(x) / n

[1] 5

x̄ =
n

∑
i=1

xi
1
n

17 / 57

New mean: function body
Our code seems to be doing what we want, so let's insert it. To be explicit, I've stored the answer (within
the function) as mean_val, then returned that value.

new_mean <- function(x) {
 n <- length(x)
 mean_val <- sum(x) / n
 return(mean_val)
}

18 / 57

Testing a function
Let's plug in the vector that we created to test it:

new_mean(x = x)

[1] 5

And then try another one we create on the spot:

new_mean(x = c(100, 200, 300))

[1] 200

Great!Great!

19 / 57

Adding another argument
Let's say we plan to be using our new_mean() function to calculate proportions (i.e., the mean of a binary
variable). Sometimes we'll want to report them as percentages by multiplying the proportion by 100.
Let's name our new function prop(). We'll use the same structure as we did with new_mean().

prop <- function(x) {
 n <- length(x)
 mean_val <- sum(x) / n
 return(mean_val)
}

20 / 57

Testing the code
Now we'll want to test on a vector of 1's and 0's.

x <- c(0, 1, 1)

To calculate the proportion and turn it into a percentage, we'll just multiply the mean by 100.

percent <- 100
percent * sum(x) / length(x)

[1] 66.66667

21 / 57

Testing the code
We want to give users the option to choose between a proportion and a percentage. So we'll add an
argument percent. When we want to just return the proportion, we can just set percent to be 1.

percent <- 1
percent * sum(x) / length(x)

[1] 0.6666667

22 / 57

Adding another argument
If we add percent as an argument, we can refer to it in the function body.

prop <- function(x, percent) {
 n <- length(x)
 mean_val <- percent * sum(x) / n
 return(mean_val)
}

23 / 57

Adding another argument
Now we can test:

prop(x = c(1, 0, 1, 0), percent = 1)

[1] 0.5

prop(x = c(1, 0, 1, 0), percent = 100)

[1] 50

24 / 57

Making a default argument
Since we don't want users to have to specify percent = 1 every time they just want a proportion, we can
set it as a defaultdefault.

prop <- function(x, percent = 1) {
 n <- length(x)
 mean_val <- percent * sum(x) / n
 return(mean_val)
}

Now we only need to specify that argument if we want a percentage.

prop(x = c(0, 1, 1, 1))

[1] 0.75

prop(x = c(0, 1, 1, 1), percent = 100)

[1] 75

25 / 57

Caveats
This is obviously not the best way to write this function!
For example, it will still work if x = c(123, 593, -192).... but it certainly won't give you a proportion
or a percentage!
We could also put percent = any number, and we'll just be multiplying the answer by that number --
this is essentially meaningless.
We also haven't done any checking to see whether the user is even entering numbers! We could put in
better error messages so users don't just get an R default error message if they do something wrong.

prop(x = c("blah", "blah", "blah"))

Error in sum(x): invalid 'type' (character) of argument

26 / 57

Exercises 1

1. You're tired of writing x^2 when you want to square x. Make a function to square a number. You can call
it square().

2. You don't just want to square numbers, you want to raise them to higher powers too. Make a function
that uses two arguments, x for a number, and power for the power. Call it raise().

3. Change your raise() function to default to squaring x when the user doesn't enter a value for power.
4. Use your function to square and cube 524 with raise(524) and raise(524, power = 3).

27 / 57

https://giphy.com/gifs/line-cube-shapes-2WUkAVDzuQbUA?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=
https://giphy.com/gifs/line-cube-shapes-2WUkAVDzuQbUA?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=

When to make a function
There's a rule somewhere that says that if you are copying and pasting something 3 times in your code, you
should just make a function to do it instead.
For example, when we were calculating quantiles:

nlsy %>% summarize(q.1 = quantile(age_bir, probs = 0.1),
 q.2 = quantile(age_bir, probs = 0.2),
 q.3 = quantile(age_bir, probs = 0.3),
 q.4 = quantile(age_bir, probs = 0.4),
 q.5 = quantile(age_bir, probs = 0.5))

A tibble: 1 x 5
q.1 q.2 q.3 q.4 q.5
<dbl> <dbl> <dbl> <dbl> <dbl>
1 17 18 20 21 22

We could make a function to do this instead!We could make a function to do this instead!

28 / 57

Age at first birth quantile function
What will our argument(s) be? How about just the quantile of interest, to start out, which we can refer to as
q.
What will the name of our function be? Since we're looking at quantiles of age at first birth, let's call it
age_bir_q():

age_bir_q <- function(q) {

}

29 / 57

Prepare the code
First let's choose a value to help us write the code for the body of our function:

q <- .5

Then we can write the code with reference to the variable q.

nlsy %>% summarize(
 q_var = quantile(age_bir, probs = q)
)

A tibble: 1 x 1
q_var
<dbl>
1 22

30 / 57

Copy and paste just once
age_bir_q <- function(q) {
 quant <- nlsy %>%
 summarize(q_var = quantile(age_bir, probs = q))
 return(quant)
}

It's always good to check your function, if possible, with some other way to get the same result. Here we
can double check using the median:

age_bir_q(q = 0.5)

A tibble: 1 x 1
q_var
<dbl>
1 22

median(nlsy$age_bir)

[1] 22

31 / 57

What if we want to change the variable
This is where things get a little tricky. It's hard to use an unquoted variable name as an argument to a
function. Since it's not an object in the environment, R will complain if we try to do something like this:

var_q <- function(q, var) {
 quant <- nlsy %>%
 summarize(q_var = quantile(var, probs = q))
 return(quant)
}
var_q(q = 0.5, var = income)

Error in quantile(var, probs = q): object 'income' not found

We might think it would help if we put income in quotes, but alas!

var_q(q = 0.5, var = "income")

Error in (1 - h) * qs[i]: non-numeric argument to binary operator

32 / 57

What if we want to change the variable
There are more "official" ways to deal with this that are beyond the scope of this class, but there's usually a
workaround to be able to write your variable name as a character string instead.
Consider that we can rename a variable using the rename() function, which can take variable names in
quotes:

nlsy %>%
 rename(eyeglasses = "glasses")

A tibble: 1,205 x 10
eyeglasses eyesight sleep_wkdy sleep_wknd id nsibs samp race_eth sex region
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 1 5 7 3 3 5 3 2 1
2 1 2 6 7 6 1 1 3 1 1
3 0 2 7 9 8 7 6 3 2 1
4 1 3 6 7 16 3 5 3 2 1
5 0 3 10 10 18 2 1 3 1 3
6 1 2 7 8 20 2 5 3 2 1
7 0 1 8 8 27 1 5 3 2 1
… with 1,198 more rows

33 / 57

What if we want to change the variable
Let's just rename the variable we want to new_var, then we can pass the variable new_var to any function
we want:

var_q <- function(q, var) {
 quant <- nlsy %>%
 rename(new_var = var) %>%
 summarise(q_var = quantile(new_var, probs = q))
 return(quant)
}
var_q(q = 0.5, var = "income")

A tibble: 1 x 1
q_var
<dbl>
1 11155

34 / 57

Use our function on any combination of var and q

var_q(q = 0.25, var = "sleep_wkdy")

A tibble: 1 x 1
q_var
<dbl>
1 6

35 / 57

Use our function on any combination of var and q

var_q(q = 0.95, var = "nsibs")

A tibble: 1 x 1
q_var
<dbl>
1 9

36 / 57

Changing a grouping variable
We might run into the same problem with wanting to change a variable, if, say, we want to calculate the
mean for a number of different variables:

nlsy %>% group_by(sex) %>% summarise(mean_inc = mean(income))

A tibble: 2 x 2
sex mean_inc
<dbl> <dbl>
1 1 16690.
2 2 14292.

nlsy %>% group_by(race_eth) %>% summarise(mean_inc = mean(income))

A tibble: 3 x 2
race_eth mean_inc
<dbl> <dbl>
1 1 10795.
2 2 10490.
3 3 18814.

It will be your job in the exercises to write a function to do this!

37 / 57

Exercises 2

1. Write a function to calculate the stratified mean income for grouping variable var. In other words, write
a function such that mean_group_inc(var = "sex") produces the same results as the first line on the
previous slide, mean_group_inc(var = "race_eth") the second.

2. Rewrite your function to accept two arguments: group_var to determine what the grouping variable is,
and mean_var to determine what variable you want to take the mean of (e.g., mean_group(group_var
= "sex", mean_var = "income") should give you the same results as above).

38 / 57

https://giphy.com/gifs/l3vR4Fp4U1DhW8bhS?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%253A%252F%252Fwww.hitched.co.uk%252Fwedding-planning%252Ffun%252Farguments-every-engaged-couple-have%252F
https://giphy.com/gifs/l3vR4Fp4U1DhW8bhS?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%253A%252F%252Fwww.hitched.co.uk%252Fwedding-planning%252Ffun%252Farguments-every-engaged-couple-have%252F

Repeating functions
Often we want to repeat functions, or some procedure, over and over again.
One option which you may be familiar with from other programming languages is a for loopfor loop:

for (i in 1:3) {
 print(i)
}

[1] 1
[1] 2
[1] 3

39 / 57

Structure of a for loop

for (i in vals) {
 something(i) # do things here!
}

40 / 57

If we want to print our results to the console, we have to
use the print() function
qs <- c(0.1, 0.5, 0.9)
for (i in qs) {
 print(var_q(q = i, var = "income"))
}

A tibble: 1 x 1
q_var
<dbl>
1 3177.
A tibble: 1 x 1
q_var
<dbl>
1 11155
A tibble: 1 x 1
q_var
<dbl>
1 33024.

41 / 57

If we want to save our results, we should set up an empty
object to do so

results <- rep(NA, 3)
for (i in 1:3) {
 results[[i]] <- i * 1.5
}
results

[1] 1.5 3.0 4.5

42 / 57

What just happened?

results <- rep(NA, 3)
results # empty vector of NAs

[1] NA NA NA

for (i in 1:3) {
 # fill the i'th entry with
 # the value i times 1.5
 results[[i]] <- i * 1.5
}

43 / 57

Quick detour back to our function
Let's return just the q_var column, not the whole tibble that was created (since this function is really just
calculating one number)

var_q_new <- function(q, var) {
 quant <- nlsy %>%
 rename(new_var = var) %>%
 summarise(q_var = quantile(new_var, probs = q)) %>%
 pull(q_var)
 return(quant)
}
var_q_new(q = 0.5, var = "income")

50%
11155

44 / 57

If we want to calculate all the deciles of income

use seq to generate values from
0.1 to 0.9, skipping along by 0.1
qs <- seq(0.1, 0.9, by = 0.1)
qs

[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

use length() to get the right number of
empty values without even thinking!
deciles <- rep(NA, length(qs))

45 / 57

What values do we want to cycle through?
The seq_along function is the best way to go from 1 to the length of your vector:

seq_along(qs)

[1] 1 2 3 4 5 6 7 8 9
We can extract the value from qs that we want with whatever value i is at:

i <- 4 # (for example)
qs[[i]]

[1] 0.4

46 / 57

Putting it all together

for (i in seq_along(qs)) {
 deciles[[i]] <- var_q_new(q = qs[[i]],
 var = "income")
}
deciles

[1] 3177.2 5025.6 6907.2 9000.0 11155.0 14000.0 18053.6 23800.0 33024.0

47 / 57

Notes on for loops
The i is arbitrary... you can cycle through whatever variable you want, you don't have to call it i!
People may try to tell you that for loops in R are slow. This is generally only true if you don't make an
empty vector or matrix to hold your results ahead of time.
That said, there's often a more concise and readable equivalent to a for loop in R. The apply() family of
functions is one option (brief guide here), but I have started exclusively using the purrr package and its
map() family. The "iteration" chapter in the R for Data Science book is highly recommended.

48 / 57

https://petewerner.blogspot.com/2012/12/using-apply-sapply-lapply-in-r.html
https://r4ds.had.co.nz/iteration.html

Exercises 3

1. Change the last for loop in the slides to loop over different variables instead of different quantiles. That
is, calculate the 0.25 quantile for each of c("income", "age_bir", "nsibs") in a for loop.

2. You can nest for loops inside each other, as long as you use different iteration variables. Write a nested
for loop to iterate over variables (with i) and quantiles (with j). You'll need to start with an empty
matrix instead of a vector, with rows indexed by i and columns by j. Calculate each of the deciles for
each of the above variables.

49 / 57

https://giphy.com/gifs/loop-cat-EmMWgjxt6HqXC?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=
https://giphy.com/gifs/loop-cat-EmMWgjxt6HqXC?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=

Other options
This class introduced you to the basics... but there are usually easier/more efficient ways to do everything.
I'll show you some examples of a helpful set of functions that you can look more into on your own.

50 / 57

Summarize multiple variables with multiple functions

nlsy %>%
 summarise_at(vars(contains("sleep")),
 list(med = median, sd = sd))

A tibble: 1 x 4
sleep_wkdy_med sleep_wknd_med sleep_wkdy_sd sleep_wknd_sd
<dbl> <dbl> <dbl> <dbl>
1 7 7 1.34 1.50

51 / 57

Summarize all numeric variables with multiple functions

nlsy %>%
 summarise_if(is.numeric, mean)

A tibble: 1 x 14
glasses eyesight sleep_wkdy sleep_wknd id nsibs samp race_eth sex region income
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.518 1.99 6.64 7.27 5229. 3.94 7.00 2.40 1.58 2.59 15289.
… with 3 more variables: res_1980 <dbl>, res_2002 <dbl>, age_bir <dbl>

52 / 57

Make multiple variables factors

nlsy %>%
 mutate_at(vars(eyesight,
 race_eth, sex),
 factor) %>%
 select(eyesight, race_eth, sex)

A tibble: 1,205 x 3
eyesight race_eth sex
<fct> <fct> <fct>
1 1 3 2
2 2 3 1
3 2 3 2
4 3 3 2
5 3 3 1
6 2 3 2
… with 1,199 more rows

53 / 57

Rename all your variables

nlsy %>%
 rename_all(toupper)

A tibble: 1,205 x 14
GLASSES EYESIGHT SLEEP_WKDY SLEEP_WKND ID NSIBS SAMP RACE_ETH SEX REGION INCOME
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 1 5 7 3 3 5 3 2 1 22390
2 1 2 6 7 6 1 1 3 1 1 35000
3 0 2 7 9 8 7 6 3 2 1 7227
4 1 3 6 7 16 3 5 3 2 1 48000
5 0 3 10 10 18 2 1 3 1 3 4510
6 1 2 7 8 20 2 5 3 2 1 50000
7 0 1 8 8 27 1 5 3 2 1 20000
8 1 1 8 8 49 6 5 3 2 1 23900
9 1 2 7 8 57 1 5 3 2 1 23289
10 0 1 8 8 67 1 1 3 1 1 35000
… with 1,195 more rows, and 3 more variables: RES_1980 <dbl>, RES_2002 <dbl>,
AGE_BIR <dbl>

54 / 57

Resources
Blog post focusing on these "scoped" variants: http://www.rebeccabarter.com/blog/2019-01-23_scoped-
verbs/
Series of blog posts that help with manipulating data: https://suzan.rbind.io/categories/tutorial/
Two videos about some more advanced topics that allow us to pass variable names to functions:
https://www.youtube.com/watch?v=nERXS3ssntw and https://www.youtube.com/watch?v=2-gknoyjL3A
Blog post on the apply() family of functions: https://petewerner.blogspot.com/2012/12/using-apply-
sapply-lapply-in-r.html
Video tutorial on the map() family of functions: https://resources.rstudio.com/wistia-rstudio-conf-
2017/happy-r-users-purrr-tutorial-charlotte-wickham

55 / 57

http://www.rebeccabarter.com/blog/2019-01-23_scoped-verbs/
https://suzan.rbind.io/categories/tutorial/
https://www.youtube.com/watch?v=nERXS3ssntw
https://www.youtube.com/watch?v=2-gknoyjL3A
https://petewerner.blogspot.com/2012/12/using-apply-sapply-lapply-in-r.html
https://resources.rstudio.com/wistia-rstudio-conf-2017/happy-r-users-purrr-tutorial-charlotte-wickham

Challenge
Create a function that calculates the stratified proportion of people with different levels of eyesight by any
categorical variable. Then use any technique (besides copying and pasting) to calculate the proportions
stratified by sex, race_eth, and region. You should end up with something like this:

56 / 57

A tibble: 45 x 5
var var_level eyesight n prop
<chr> <dbl> <dbl> <int> <dbl>
1 sex 1 1 228 0.455
2 sex 1 2 162 0.323
3 sex 1 3 85 0.170
4 sex 1 4 21 0.0419
5 sex 1 5 5 0.00998
6 sex 2 1 246 0.349
7 sex 2 2 223 0.317
8 sex 2 3 164 0.233
9 sex 2 4 57 0.0810
10 sex 2 5 14 0.0199
11 race_eth 1 1 90 0.427
12 race_eth 1 2 54 0.256
13 race_eth 1 3 50 0.237
14 race_eth 1 4 14 0.0664
15 race_eth 1 5 3 0.0142
16 race_eth 2 1 102 0.332
17 race_eth 2 2 96 0.313
18 race_eth 2 3 73 0.238
19 race_eth 2 4 29 0.0945
20 race_eth 2 5 7 0.0228
21 race_eth 3 1 282 0.410
22 race_eth 3 2 235 0.342
23 race_eth 3 3 126 0.183
24 race_eth 3 4 35 0.0509 57 / 57

