confounded_meta.Rd
Computes point estimates, standard errors, and confidence interval bounds
for (1) prop
, the proportion of studies with true effect sizes above q
(or below
q
for an apparently preventive yr
) as a function of the bias parameters;
(2) the minimum bias factor on the relative risk scale (Tmin
) required to reduce to
less than r
the proportion of studies with true effect sizes more extreme than
q
; and (3) the counterpart to (2) in which bias is parameterized as the minimum
relative risk for both confounding associations (Gmin
).
confounded_meta( q, r = NA, muB = NA, sigB = 0, yr, vyr = NA, t2, vt2 = NA, CI.level = 0.95, tail = NA )
q | True effect size that is the threshold for "scientific significance" |
---|---|
r | For |
muB | Mean bias factor on the log scale across studies |
sigB | Standard deviation of log bias factor across studies |
yr | Pooled point estimate (on log scale) from confounded meta-analysis |
vyr | Estimated variance of pooled point estimate from confounded meta-analysis |
t2 | Estimated heterogeneity (tau^2) from confounded meta-analysis |
vt2 | Estimated variance of tau^2 from confounded meta-analysis |
CI.level | Confidence level as a proportion |
tail |
|
To compute all three point estimates (prop, Tmin, and Gmin
) and inference, all
arguments must be non-NA
. To compute only a point estimate for prop
,
arguments r, vyr
, and vt2
can be left NA
. To compute only
point estimates for Tmin
and Gmin
, arguments muB, vyr
, and vt2
can be left NA
. To compute inference for all point estimates, vyr
and
vt2
must be supplied.
d = metafor::escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=metafor::dat.bcg) m = metafor::rma.uni(yi= d$yi, vi=d$vi, knha=FALSE, measure="RR", method="DL" ) yr = as.numeric(m$b) # metafor returns on log scale vyr = as.numeric(m$vb) t2 = m$tau2 vt2 = m$se.tau2^2 # obtaining all three estimators and inference confounded_meta( q=log(0.90), r=0.20, muB=log(1.5), sigB=0.1, yr=yr, vyr=vyr, t2=t2, vt2=vt2, CI.level=0.95 )#> Value Est SE CI.lo CI.hi #> 1 Prop 0.6450265 0.1328846 0.3845775 0.9054755 #> 2 Tmin 2.9341378 0.7320888 1.4992701 4.3690055 #> 3 Gmin 5.3163693 1.4801290 2.4153697 8.2173689# passing only arguments needed for prop point estimate confounded_meta( q=log(0.90), muB=log(1.5), yr=yr, t2=t2, CI.level=0.95 )#>#>#> Value Est SE CI.lo CI.hi #> 1 Prop 0.6427633 NA NA NA #> 2 Tmin NA NA NA NA #> 3 Gmin NA NA NA NA# passing only arguments needed for Tmin, Gmin point estimates confounded_meta( q=log(0.90), r=0.20, yr=yr, t2=t2, CI.level=0.95 )#>#> Value Est SE CI.lo CI.hi #> 1 Prop NA NA NA NA #> 2 Tmin 2.934138 NA NA NA #> 3 Gmin 5.316369 NA NA NA