confounded_meta.RdComputes point estimates, standard errors, and confidence interval bounds
for (1) prop, the proportion of studies with true effect sizes above q (or below
q for an apparently preventive yr) as a function of the bias parameters;
(2) the minimum bias factor on the relative risk scale (Tmin) required to reduce to
less than r the proportion of studies with true effect sizes more extreme than
q; and (3) the counterpart to (2) in which bias is parameterized as the minimum
relative risk for both confounding associations (Gmin).
confounded_meta( q, r = NA, muB = NA, sigB = 0, yr, vyr = NA, t2, vt2 = NA, CI.level = 0.95, tail = NA )
| q | True effect size that is the threshold for "scientific significance" |
|---|---|
| r | For |
| muB | Mean bias factor on the log scale across studies |
| sigB | Standard deviation of log bias factor across studies |
| yr | Pooled point estimate (on log scale) from confounded meta-analysis |
| vyr | Estimated variance of pooled point estimate from confounded meta-analysis |
| t2 | Estimated heterogeneity (tau^2) from confounded meta-analysis |
| vt2 | Estimated variance of tau^2 from confounded meta-analysis |
| CI.level | Confidence level as a proportion |
| tail |
|
To compute all three point estimates (prop, Tmin, and Gmin) and inference, all
arguments must be non-NA. To compute only a point estimate for prop,
arguments r, vyr, and vt2 can be left NA. To compute only
point estimates for Tmin and Gmin, arguments muB, vyr, and vt2
can be left NA. To compute inference for all point estimates, vyr and
vt2 must be supplied.
d = metafor::escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=metafor::dat.bcg) m = metafor::rma.uni(yi= d$yi, vi=d$vi, knha=FALSE, measure="RR", method="DL" ) yr = as.numeric(m$b) # metafor returns on log scale vyr = as.numeric(m$vb) t2 = m$tau2 vt2 = m$se.tau2^2 # obtaining all three estimators and inference confounded_meta( q=log(0.90), r=0.20, muB=log(1.5), sigB=0.1, yr=yr, vyr=vyr, t2=t2, vt2=vt2, CI.level=0.95 )#> Value Est SE CI.lo CI.hi #> 1 Prop 0.6450265 0.1328846 0.3845775 0.9054755 #> 2 Tmin 2.9341378 0.7320888 1.4992701 4.3690055 #> 3 Gmin 5.3163693 1.4801290 2.4153697 8.2173689# passing only arguments needed for prop point estimate confounded_meta( q=log(0.90), muB=log(1.5), yr=yr, t2=t2, CI.level=0.95 )#>#>#> Value Est SE CI.lo CI.hi #> 1 Prop 0.6427633 NA NA NA #> 2 Tmin NA NA NA NA #> 3 Gmin NA NA NA NA# passing only arguments needed for Tmin, Gmin point estimates confounded_meta( q=log(0.90), r=0.20, yr=yr, t2=t2, CI.level=0.95 )#>#> Value Est SE CI.lo CI.hi #> 1 Prop NA NA NA NA #> 2 Tmin 2.934138 NA NA NA #> 3 Gmin 5.316369 NA NA NA