Computes point estimates, standard errors, and confidence interval bounds for (1) prop, the proportion of studies with true effect sizes above q (or below q for an apparently preventive yr) as a function of the bias parameters; (2) the minimum bias factor on the relative risk scale (Tmin) required to reduce to less than r the proportion of studies with true effect sizes more extreme than q; and (3) the counterpart to (2) in which bias is parameterized as the minimum relative risk for both confounding associations (Gmin).

confounded_meta(
  q,
  r = NA,
  muB = NA,
  sigB = 0,
  yr,
  vyr = NA,
  t2,
  vt2 = NA,
  CI.level = 0.95,
  tail = NA
)

Arguments

q

True effect size that is the threshold for "scientific significance"

r

For Tmin and Gmin, value to which the proportion of large effect sizes is to be reduced

muB

Mean bias factor on the log scale across studies

sigB

Standard deviation of log bias factor across studies

yr

Pooled point estimate (on log scale) from confounded meta-analysis

vyr

Estimated variance of pooled point estimate from confounded meta-analysis

t2

Estimated heterogeneity (tau^2) from confounded meta-analysis

vt2

Estimated variance of tau^2 from confounded meta-analysis

CI.level

Confidence level as a proportion

tail

above for the proportion of effects above q; below for the proportion of effects below q. By default, is set to above for relative risks above 1 and to below for relative risks below 1.

Details

To compute all three point estimates (prop, Tmin, and Gmin) and inference, all arguments must be non-NA. To compute only a point estimate for prop, arguments r, vyr, and vt2 can be left NA. To compute only point estimates for Tmin and Gmin, arguments muB, vyr, and vt2 can be left NA. To compute inference for all point estimates, vyr and vt2 must be supplied.

Examples

d = metafor::escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=metafor::dat.bcg) m = metafor::rma.uni(yi= d$yi, vi=d$vi, knha=FALSE, measure="RR", method="DL" ) yr = as.numeric(m$b) # metafor returns on log scale vyr = as.numeric(m$vb) t2 = m$tau2 vt2 = m$se.tau2^2 # obtaining all three estimators and inference confounded_meta( q=log(0.90), r=0.20, muB=log(1.5), sigB=0.1, yr=yr, vyr=vyr, t2=t2, vt2=vt2, CI.level=0.95 )
#> Value Est SE CI.lo CI.hi #> 1 Prop 0.6450265 0.1328846 0.3845775 0.9054755 #> 2 Tmin 2.9341378 0.7320888 1.4992701 4.3690055 #> 3 Gmin 5.3163693 1.4801290 2.4153697 8.2173689
# passing only arguments needed for prop point estimate confounded_meta( q=log(0.90), muB=log(1.5), yr=yr, t2=t2, CI.level=0.95 )
#> Cannot compute inference without vyr and vt2. Returning only point estimates.
#> Cannot compute Tmin or Gmin without r. Returning only prop.
#> Value Est SE CI.lo CI.hi #> 1 Prop 0.6427633 NA NA NA #> 2 Tmin NA NA NA NA #> 3 Gmin NA NA NA NA
# passing only arguments needed for Tmin, Gmin point estimates confounded_meta( q=log(0.90), r=0.20, yr=yr, t2=t2, CI.level=0.95 )
#> Cannot compute inference without vyr and vt2. Returning only point estimates.
#> Value Est SE CI.lo CI.hi #> 1 Prop NA NA NA NA #> 2 Tmin 2.934138 NA NA NA #> 3 Gmin 5.316369 NA NA NA